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OUTLINE

Background :
      Non-local parallel heat flow in divertor plasmas.
      Lessons learned from laser heated plasma simulations.

Recent results :
      Fokker-Planck simulations of heat flow.
      Validation of our heat flow formula.
       1-D run with UEDGE
      Enhancement of ionization by non-Maxwellian effects.

Conclusion and future work :      Need for D⊥(v).

Extra : Other edge plasma and PFC materials R&D at GRIF .



• Steep temperature gradients along field lines in
divertors  ⇒  classical heat flow is invalid.

• Flux limiting is ad hoc and unsatisfactory.
• Kinetic simulations are prohibitive for routine use.
• The heat flow depends on the entire profile, not only

on the local Te gradient.
• The velocity distribution is non-Maxwellian ⇒

enhanced ionization in the cold plasma
•  Problem exists for divertor plasmas and laser heated

plasmas, but “heating” mechanism is different :
cross-field transport vs. laser absorption.

BACKGROUND
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• In the following, we use the formula with α = 0.

BACKGROUND (2)
• We developed a new non-local heat flow formula,
for laser heated plasmas, including dependence on
laser heating rate, α. (PRE 66, 066414 (2002) )
• Large effect if strong heating.  (large α)
• Similar to other formulas in the literature if α = 0.



• Advancing heat front;  fixed Te at X=0 and 20 m: 25 eV and 1 eV.
• Ne = Ni = 2.5×1019 m-3 , uniform; fully ionized.
• Nonlocal formula effective : good match to kinetic Te profile.
• Flux limited diffussion : poor match, for any flux limiter f.
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New simulation : advancing heat and ionization front
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Same conditions as preceding, except  partially ionized
Nn + Ni = 2.5×1019 m-3 , uniform.
Ionization, excitation, and reverse processes included in the kinetic
simulation, including ionization via excited states (up to n=4).



Effective ionization rate enhanced in the cold plasma
by fast electrons streaming from the hot plasma
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Effective ionization rate computed with Stotler’s IRLS model.
Same effective rates as those tabulated (vs. Ne and Te) for UEDGE,
if Maxwellians are assumed .
Includes energy levels n=1-30 for atomic hydrogen.
Full coupling of this model into kinetic code is ongoing.
Aim:  obtain a non-local formula for Seff .



1-D UEDGE Simulation
Power Source profile emulates cross field transport
Peaks at X-point, X=3 m (poloidal X), then drops.
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SUMMARY AND CONCLUSION

·The electron kinetic code FPI was used to develop and validate
   nonlocal formulas for heat flow.
·  Advancing heat front:  fluid and kinetic (FPI) simulations .
   showed the validity of the nonlocal heat flux formula,
   and invalidity of flux limiting, for any flux limiter.
·  This nonlocal formula was implemented in UEDGE.
    Considerable change seen, compared to classical calculation.
• Large enhancement of the ionization rate in the cold plasma, due
  to non-Maxwellian effects.



FUTURE WORK
• Ongoing:  develop nonlocal formulas for non-Maxwellian

modifications to the ionization rate, sheath potential, etc.

•  Assumption here:  source heating << e-e relaxation.

•  Simulations on laser plasmas show that removing this limitation
changes nonlocal heat flow.   But there, heating is by laser
absorption, preferentially into slow electrons ( ∝ 1/v3).

•  Challenge to gyro-kinetic code modelers:  what is the energy
dependence of cross-field transport?    Given this dependence, we
will be able to modify our nonlocal heat flow formula
accordingly.   This could modify  the physics shown here.

•  Future : 2-D kinetic simulations,  with appropriate prescription
for cross-field transport, to obtain 2-D non-local formulas.



Other edge plasma and PFC
materials R&D at INRS

• Most collaborations with European groups.
• Simulations of ITER edge plasma with code B2.

(H. Pacher)
• Probes development and installation on several

Tokamaks (C. Boucher)
• Nitrogen ion beam implantation of carbon PFC’s.

Results:  Reduced chemical erosion rate and
Improved H retention.   (G. Ross)



Motivation
-  Carbon has been widely used for PFC’s in different tokamaks.
-  C erosion by H and O at high T, and poor H (tritium) retention are
    major obstacles for tokamak use.
-  Properties of  the C3N4 are promising for PFC’s and have inspired that work.
-  N implanted C as PFC’s could be made in tokamaks between the discharges.
-  N is a low-Z element compatible with its use as PFC’s in a tokamak.

C was deposited on Si wafers by sublimation of a C filament (2x10-7 Torr.)
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Sample preparation

SRIM simulation
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Results: H retention (irradiation and high T) is improved
Chemical erosion is decreased
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